Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching
نویسندگان
چکیده
Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians' head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians' size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.
منابع مشابه
Pedestrian Detection in Infrared Outdoor Images Based on Atmospheric Situation Estimation
Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric situations. In this paper an efficient method is proposed for detecting pedestrians in ...
متن کاملDesign an Intelligent Driver Assistance System Based On Traffic Sign Detection with Persian Context
In recent years due to improvements of technology within automobile industry, design process of advanced driver assistance systems for collision avoidance and traffic management has been investigated in both academics and industrial levels. Detection of traffic signs is an effective method to reach the mentioned aims. In this paper a new intelligent driver assistance system based on traffic...
متن کاملPedestrian Detection Based on Hybrid Features Using near Infrared Images
This paper explores a hybrid-based method to fuse multi-slit features and Histograms of Oriented Gradients (HOG) features for pedestrian detection from Near Infrared (NIR) images. The fused feature set utilizes both the multi-slit method’s capability of accurately capturing the local spatial layout of body parts (head, torso and legs) in individual frames and the HOG’s capability in region info...
متن کاملDetection and Recognition of Multi-language Traffic Sign Context by Intelligent Driver Assistance Systems
Design of a new intelligent driver assistance system based on traffic sign detection with Persian context is concerned in this paper. The primary aim of this system is to increase the precision of drivers in choosing their path with regard to traffic signs. To achieve this goal, a new framework that implements fuzzy logic was used to detect traffic signs in videos captured along a highway f...
متن کاملPedestrian Detection in Far-Infrared Daytime Images Using a Hierarchical Codebook of SURF
One of the main challenges in intelligent vehicles concerns pedestrian detection for driving assistance. Recent experiments have showed that state-of-the-art descriptors provide better performances on the far-infrared (FIR) spectrum than on the visible one, even in daytime conditions, for pedestrian classification. In this paper, we propose a pedestrian detector with on-board FIR camera. Our ma...
متن کامل